
Shaffan Aleem
shaffanaleem@hotmail.com • linkedin.com/in/shaffan-aleem-b7a852255/ • github.com/ibnaleem

EDUCATION

University of Liverpool | Liverpool, UK Graduating 2027
Degree: BSc (Honours) Computer Science with Software Development with a Year in Industry
Coursework: Data Structures & Algorithms, Database Development, Calculus, Computer Networks, Computer
Systems, Cybersecurity, Discrete Mathematics, Intro to Artificial Intelligence, Intro to Data Science, Linear Algebra,
Object Oriented Programming (Java), Principles of C & Memory Management, Programming Paradigms (Haskell),
Software Engineering

SKILLS & TECHNICAL TOOLS

Languages: Python, Java, C, C++, C#, Haskell, JavaScript
Technologies: Git, RESTful APIs, JSON, Linux, Windows OS, Blockchains, Cryptography

PROJECTS

Blockchain | Networking, Cryptography. Flask, Algorithms, URL Parsing, Dataclasses, JSON, Requests, Python
● Created a blockchain implementation in Python.
● Defined a Blockchain class with several methods to manage the blockchain, transactions, nodes, and consensus

algorithm.
● Implemented a Block class as a data structure within the blockchain, containing attributes like index, timestamp,

transactions, proof, and previous block’s hash.
● Defined a GenesisBlock class that inherits from Block class and represents the initial block of the blockchain.
● Utilised the dataclasses module to define the block and genesis block as data classes with specified attributes.
● Implemented methods to add new blocks, create new transactions, and calculate the proof of work for mining.
● Included a register node method to add new nodes to the network.
● Implemented a valid chain method to check the validity of the blockchain based on block hashes and proof of

work.
● Created a resolve conflicts method to implement a consensus algorithm that replaces the local chain with the

longest valid chain from the network.
● Utilised Python's requests module to make HTTP requests to interact with other nodes.
● Defined methods to calculate valid proofs and validate proofs based on the requirement of leading zeroes.
● Utilised time module for timestamping blocks and urlparse from urllib.parse to parse URLs.
InstaTracker | Python, Instaloader, Rich
● Developed an Instagram tracker script in Python using the Instaloader library for account monitoring, leveraging

object-oriented programming principles for modular design and functionality.
● Implemented a robust InstaTracker class with methods to fetch and log Instagram metrics such as followers,

following count, post count, and bio updates.
● Integrated the rich library for terminal styling, enhancing user interface with bold and coloured text for clearer

information presentation.
● Managed script execution flow with a continuous monitoring loop that updates every 5 minutes, ensuring

real-time tracking of account changes.
● Employed exception handling to address potential errors like login failures or network interruptions, ensuring

script reliability and continuous operation.
● Enhanced usability by providing a command-line interface (CLI) powered by argparse, allowing users to specify

the Instagram username they wish to track.
● Implemented automated login functionality to streamline authentication processes, ensuring seamless script

operation without manual intervention.

https://www.linkedin.com/in/shaffan-aleem-b7a852255/
https://github.com/ibnaleem


● Incorporated logging functionality to record all account changes in a structured format within
{username}_logs.txt, enabling comprehensive tracking and historical review.

● Utilised datetime module for timestamp management, capturing and displaying timestamps in UTC format for
accurate timekeeping.

● Encouraged community contribution and collaboration by providing project details and links to the GitHub
repository in the script's documentation footer.

SnapscoreTracker | Python, Pandas, Numpy, Rich
● Created a Snapscore tracker in Python.
● Defined a SnapscoreTracker class with several methods to manage Snapscore logging, calculations, and reporting.
● Implemented methods to add new Snapscore logs, create directories for storing logs, and calculate the time

difference between logs using os.makedirs for directory creation and datetime.timedelta for time calculations.
● Utilised the datetime module to handle timestamps and time calculations, specifically using

datetime.datetime.utcnow() to capture the current date and time for each log entry.
● Employed the pandas module to manage and manipulate Snapscore data within CSV files. Used

pandas.read_csv to read data from CSV files and pandas.DataFrame.to_csv to write data back to CSV files.
● Utilised pandas.DataFrame.apply function to apply custom functions across DataFrame rows, enabling

complex calculations such as Snap rate per minute, hour, and day.
● Implemented a method to calculate Snap rate per minute, hour, and day, using apply to iterate over rows and

perform calculations based on time differences and Snapscore increases.
● Utilised the rich module to display output messages in the console with formatting, leveraging

rich.console.Console for styled and formatted console outputs.
● Used the numpy module to handle numerical operations, specifically using numpy.nan to initialise empty

columns for Snap rate calculations.
● Implemented methods to calculate averages for specified columns within the logs, such as average Snapscore

increase, using pandas.DataFrame.mean to compute average values.
● Used the argparse module to handle command-line arguments, allowing users to specify usernames, Snapscore,

and custom times for logs. Defined arguments using argparse.ArgumentParser and
argparse.ArgumentParser.add_argument.

● Ensured logs were maintained in CSV format for easy data manipulation and reporting, with proper headers and
consistent formatting.

● Added error handling to manage directory creation and file writing operations, using try-except blocks to catch
and handle exceptions such as FileNotFoundError and IOError.

Luhn Algorithm | Data Structures and Algorithms, Python
● Implemented a LuhnAlgorithm class in Python to validate credit card numbers using the Luhn algorithm.
● The class constructor takes either a single card number or a list of card numbers as input.
● Defined methods to double every other digit starting from the second-to-last digit and sum all digits in the card

number according to the Luhn algorithm.
● Utilised Python's list comprehension and loop constructs to efficiently process card numbers.
● Included logic to handle cases where the length of the card number is odd or even.
● Implemented a validate method to apply the Luhn algorithm to each card number and determine if it is valid.
● The method returns a list of boolean values indicating the validity of each card number provided.
● Utilised object-oriented programming principles to encapsulate functionality within the class and promote code

reusability.
● Implemented error handling to ensure that the input is of the correct type and format.
Queue | Data Structures and Algorithms, Python
● Developed a Queue class in Python to implement the functionality of a first-in-first-out (FIFO) data structure,

formally known as a queue.
● Included custom exception classes QueueEmptyError, QueueFullError, and QueueError to handle specific error

scenarios related to queue operations.
● Developed the Queue class constructor such that it initialises the queue with an optional list of items and a



maximum size parameter.
● Ensured that the queue does not contain nested lists to maintain consistency in the data structure.
● Implemented methods to enqueue, dequeue, peek, clear, merge, and calculate frequency of items in the queue.
● Utilised object-oriented programming principles to encapsulate functionality within the class and promote code

reusability.
● Included methods to check if the queue is full, empty, and calculate available size.
● Implemented a method to sort the queue in ascending order while preserving its FIFO nature.

WORK EXPERIENCE

Healthcare/Clinical Assistant |InHealth Group April–October 2023
● Welcomed patients professionally, managing their journey from arrival to departure, ensuring a positive

experience throughout their diagnostic pathway.
● Escorted patients to and from the clinical area, providing detailed explanations of procedures and addressing

inquiries or concerns.
● Completed pre-scan data protection/consent forms and health and safety questionnaires.
● Assessed and monitored patients' conditions post-procedure, promptly reporting any changes to relevant

staff.
● Maintained a patient and customer-focused approach to enhance the success of the Ultrasound department.
● Accurately entered patient data into the management system, ensuring data integrity.
● Managed administrative tasks, including handling inquiries, booking clinically validated appointments, and

ensuring accurate and timely invoicing.
● Demonstrated an empathetic and caring approach, delivering the highest level of customer service.
● Applied understanding of health and safety and infection control principles.
● Worked independently and collaboratively within a multi-skilled team, adapting to flexible working patterns to

meet site requirements.
● Exhibited excellent written and verbal communication skills, presenting information logically and efficiently.
● Utilised strong administration skills, quickly adapting to new systems.
● Attended courses to enhance knowledge and skills for the role.


