Shaffan Aleem

shaffanaleem@hotmail.com * linkedin.com/in/shaffan-aleem-b7a852255/ * github.com/ibnaleem
EDUCATION

University of Liverpool | Liverpool, UK Graduating 2027
Degree: BSc (Honours) Computer Science with Software Development with a Year in Industry

Coursework: Data Structures & Algorithms, Database Development, Calculus, Computer Networks, Computer
Systems, Cybersecurity, Discrete Mathematics, Intro to Artificial Intelligence, Intro to Data Science, Linear Algebra,
Object Oriented Programming (Java), Principles of C & Memory Management, Programming Paradigms (Haskell),
Software Engineering

SKILLS & TECHNICAL TOOLS

Languages: Python, Java, C, C++, C#, Haskell, JavaScript
Technologies: Git, RESTful APIs, JSON, Linux, Windows OS, Blockchains, Cryptography

PROJECTS

Blockchain | Nemworking, Cryptography. Flask, Algorithms, URL Parsing, Dataclasses, ]SON, Requests, Python

® Created a blockchain implementation in Python.

® Defined a Blockchain class with several methods to manage the blockchain, transactions, nodes, and consensus
algorithm.

e Implemented a Block class as a data structure within the blockchain, containing attributes like index, timestamp,

transactions, proof, and previous block’s hash.

Defined a GenesisBlock class that inherits from Block class and represents the initial block of the blockchain.

Utilised the dataclasses module to define the block and genesis block as data classes with specified attributes.

Implemented methods to add new blocks, create new transactions, and calculate the proof of work for mining.

Included a register node method to add new nodes to the network.

Implemented a valid chain method to check the validity of the blockchain based on block hashes and proof of

work.

® Created a resolve conflicts method to implement a consensus algorithm that replaces the local chain with the
longest valid chain from the network.

® Utilised Python's requests module to make HTTP requests to interact with other nodes.

® Defined methods to calculate valid proofs and validate proofs based on the requirement of leading zeroes.

e Ultilised time module for timestamping blocks and urlparse from urllib.parse to parse URLs.

InstaTracker | Python, Instaloader, Rich

® Developed an Instagram tracker script in Python using the Instaloader library for account monitoring, leveraging
object-oriented programming principles for modular design and functionality.

e Implemented a robust InstaTracker class with methods to fetch and log Instagram metrics such as followers,
following count, post count, and bio updates.

® Integrated the rich library for terminal styling, enhancing user interface with bold and coloured text for clearer
information presentation.

® Managed script execution flow with a continuous monitoring loop that updates every 5 minutes, ensuring
real-time tracking of account changes.

e Employed exception handling to address potential errors like login failures or network interruptions, ensuring
script reliability and continuous operation.

® Enhanced usability by providing a command-line interface (CLI) powered by argparse, allowing users to specify
the Instagram username they wish to track.

e Implemented automated login functionality to streamline authentication processes, ensuring seamless script
operation without manual intervention.


https://www.linkedin.com/in/shaffan-aleem-b7a852255/
https://github.com/ibnaleem

Incorporated logging functionality to record all account changes in a structured format within
{username}_logs.txt, enabling comprehensive tracking and historical review.

Utilised datetime module for timestamp management, capturing and displaying timestamps in UTC format for
accurate timekeeping.

Encouraged community contribution and collaboration by providing project details and links to the GitHub
repository in the script's documentation footer.

SnapscoreTracker | Python, Pandas, Numpy, Rich

Created a Snapscore tracker in Python.

Defined a SnapscoreTracker class with several methods to manage Snapscore logging, calculations, and reporting,
Implemented methods to add new Snapscore logs, create directories for storing logs, and calculate the time
difference between logs using os.makedirs for directory creation and datetime.timedelta for time calculations.
Utilised the datetime module to handle timestamps and time calculations, specifically using
datetime.datetime.utcnow() to capture the current date and time for each log entry.

Employed the pandas module to manage and manipulate Snapscore data within CSV files. Used
pandas.read_csv to read data from CSV files and pandas.DataFrame.to_csv to write data back to CSV files.
Utilised pandas.DataFrame.apply function to apply custom functions across DataFrame rows, enabling
complex calculations such as Snap rate per minute, hour, and day.

Implemented a method to calculate Snap rate per minute, hour, and day, using apply to iterate over rows and
perform calculations based on time differences and Snapscore increases.

Utilised the rich module to display output messages in the console with formatting, leveraging
rich.console.Console for styled and formatted console outputs.

Used the numpy module to handle numerical operations, specifically using numpy.nan to initialise empty
columns for Snap rate calculations.

Implemented methods to calculate averages for specified columns within the logs, such as average Snapscore
increase, using pandas.DataFrame.mean to compute average values.

Used the argparse module to handle command-line arguments, allowing users to specify usernames, Snapscore,
and custom times for logs. Defined arguments using argparse.ArgumentParser and
argparse.ArgumentParser.add_argument.

Ensured logs were maintained in CSV format for easy data manipulation and reporting, with proper headers and
consistent formatting.

Added error handling to manage directory creation and file writing operations, using try-except blocks to catch
and handle exceptions such as FileNotFoundError and IOError.

Luhn Algorithm | Data Structures and Algorithms, Python

Implemented a LuhnAlgorithm class in Python to validate credit card numbers using the Luhn algorithm.

The class constructor takes either a single card number or a list of card numbers as input.

Defined methods to double every other digit starting from the second-to-last digit and sum all digits in the card
number according to the Luhn algorithm.

Utilised Python's list comprehension and loop constructs to efficiently process card numbers.

Included logic to handle cases where the length of the card number is odd or even.

Implemented a validate method to apply the Luhn algorithm to each card number and determine if it is valid.
The method returns a list of boolean values indicating the validity of each card number provided.

Utilised object-oriented programming principles to encapsulate functionality within the class and promote code
reusability.

Implemented error handling to ensure that the input is of the correct type and format.

Queue | Data Structures and Algorithms, Python

Developed a Queue class in Python to implement the functionality of a first-in-first-out (FIFO) data structure,
formally known as a queue.

Included custom exception classes QueueEmptyError, QueueFullError, and QueueError to handle specific error
scenarios related to queue operations.

Developed the Queue class constructor such that it initialises the queue with an optional list of items and a



maximum size parameter.

® Ensured that the queue does not contain nested lists to maintain consistency in the data structure.
e Implemented methods to enqueue, dequeue, peek, clear, merge, and calculate frequency of items in the queue.
e Ultilised object-oriented programming principles to encapsulate functionality within the class and promote code
reusability.
® Included methods to check if the queue is full, empty, and calculate available size.
e Implemented a method to sort the queue in ascending order while preserving its FIFO nature.
WORK EXPERIENCE
Healthcare/Clinical Assistant | InHealth Group April-October 2023
® Welcomed patients professionally, managing their journey from arrival to departure, ensuring a positive
experience throughout their diagnostic pathway.
® [Escorted patients to and from the clinical area, providing detailed explanations of procedures and addressing
inquiries or concerns.
Completed pre-scan data protection/consent forms and health and safety questionnaires.
® Assessed and monitored patients' conditions post-procedure, promptly reporting any changes to relevant
staff.
® Maintained a patient and customer-focused approach to enhance the success of the Ultrasound department.
Accurately entered patient data into the management system, ensuring data integrity.
Managed administrative tasks, including handling inquiries, booking clinically validated appointments, and
ensuring accurate and timely invoicing,
Demonstrated an empathetic and caring approach, delivering the highest level of customer service.
Applied understanding of health and safety and infection control principles.
Worked independently and collaboratively within a multi-skilled team, adapting to flexible working patterns to
meet site requirements.
Exhibited excellent written and verbal communication skills, presenting information logically and efficiently.
Utilised strong administration skills, quickly adapting to new systems.
e Attended courses to enhance knowledge and skills for the role.



